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ABSTRACT

The popularity of the sport of auto racing is increasing rapidly, but its fans remain less
interested in statistics than the fans of other sports. In this paper, we propose a new class
of models for permutations which closely resembles the behavior of auto racing results. We
pose the model in a Bayesian hierarchical framework. This framework permits hierarchical
specification and fully hierarchical estimation of interaction terms. The methodology is
demonstrated using several rich datasets which consist of repeated rankings for a collection
of drivers. Our models can potentially identify individuals who are racing in “minor
league” divisions who have higher potential for competitive performance at higher levels.
We also present evidence that one of the sport’s more controversial figures, Jeff Gordon,
is a statistically dominant figure.
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1. INTRODUCTION

Stock car racing is the fastest growing sport in the United States with a 91% growth in attendance in
the 1990’s (Martin 2000). Furthermore, the National Association for Stock Car Auto Racing (NASCAR)
is second only to the National Football League in television viewership with over 180 million viewers in
1998. Despite the popularity of the sport, NASCAR has received little attention as a subject of study by
statisticians. As a classroom example, Tenebein (1971) proposed a simple probability model for the number
of cars on a track at any given time. Sullivan (2000) used ordered probit modeling (under which all drivers’
finishing positions in the same race are treated as independent) to estimate driver abilities on each of four
types of tracks, overall, in qualifying, and in avoiding accidents. Mockus, Hibino, and Graves (2000) used
NASCAR data to demonstrate visualization tools.

NASCAR is big business. Racing teams are composed of pit crews, mechanics, drivers, and owners.
Owners must find drivers, pit crews, and mechanics who they think will be most successful racing their cars,
and successful teams generate sponsorships that equate to money. The three NASCAR racing series are the
Winston Cup (WC), the Busch Grand National (BGN), and the Craftsman Truck (CT) series. The WC is
considered the major league series, and BGN and CT are analogous to the minor leagues in baseball. New
drivers for the WC series are generally selected from the BGN and CT series. Therefore, significant money
is at stake when deciding which BGN or CT driver will be promoted to the WC series. Reliable prediction
of how performances in the lower levels translate to higher levels (CT—BGN, CT—+WC, and BGN—-WC)
of competition are of great interest.

In this paper we construct a probability model for finishing positions in a NASCAR race. A feature of
this modeling is that we can address such questions as: “How likely would it be for Jason Keller (a BGN
driver) to win a title if he were to race in the Winston Cup?” or “what is the probability that Dale Earnhardt
would have won the championship in 2001?” Earnhardt, arguably the greatest driver in NASCAR history,
was killed on the last lap of the Daytona 500, the first race of the 2001 season. He shares with Richard Petty
the record of seven NASCAR championships, and his attempt to win his eighth after a second place finish
at age 49 in 2000 would have been watched carefully in the 2001 season.

These types of questions have led us to develop a rich class of models for permutation data. Racing data



is well-suited to explore such models because we have repeated rankings of subsets of individuals, where the
ranking mechanisms may differ in interesting ways (e.g. different tracks or different competition) and are
subject to substantial noise.

While repeated rankings allow us to estimate driving abilities, there are a number of complicating factors.
Exploring rates of improvement of young drivers is of great interest, so we explore abilities that change over
time. Most sports have home field advantages as complicating factors, but auto racing has potentially as
many home field effects as there are track—driver combinations. One measurable characteristic of a track is
its predictability, that is, to what extent good drivers are more likely than average drivers to perform well
there. We will also explore the driver—track interaction to measure the extent to which drivers specialize on
certain (types of) tracks. This is done via a hierarchical specification of interactions. Our modeling approach
is somewhat exploratory in nature: rather than striving for a single model explaining all the data, we list
several factors that we expect to be important, and for each, use an appropriate subset of our data to explore
that factor. This approach keeps each individual analysis small enough to be computationally feasible, and
makes concessions to the fact that the data set is too small to consider all hypotheses simultaneously.

Inherent in our modeling approach is the parameter estimation associated with driving team ability.
Throughout this paper we refer to driver abilities; however, the modeling employed in this paper is only able
to rate all members of the racing teams together, including owners, crew chiefs, pit crews, and mechanics. Our
data are insufficient to assess driver ability independent of team ability. Another concern is that drivers who
drive partial seasons can choose races on tracks for which their skills are well-suited. For most comparisons
between drivers, this is not an issue, in part because most of the above-average drivers compete in every
race, missing races only at random due to injury. However, race selection bias can potentially be a problem
when estimating the ability of road course specialists who drive only in the one or two races per year that
feature right turns.

This paper is organized as follows. In Section 1.1 we review related work in both sports and non-sports
applications. The data on which our analysis is based is discussed in Section 2. Our fundamental model
is presented in Section 3. Section 4 details the strategy for estimation of the model we pose. Results from

and extensions to that model are contained in Section 5. In Section 6 we conclude with some discussion and



proposals for future work.

1.1 Related Work

While the statistical literature contains little evidence of work on auto racing, there is a substantial literature
on permutation models. Marden (1995) provides a nice review of models for permutations.

Bradley and Terry (1952) present the seminal work on modeling head-to-head competition, in which
two opponents have ability parameters A; and A, and the probability of a win by the first opponent
is A1/(A1 + A2). Luce (1959) presents a natural extension of the Bradley-Terry model by allowing more
general comparisons than just paired comparisons. Plackett (1975) presents a saturated logistic model for
probabilities of winning and illustrates his methodology with voting results.

Yu and Lam (1996) provide a nice analysis of duplicate bridge tournament data, using the Bradley-Terry
model. Ties are quite common in bridge, which severely restricts modeling choices. Johnson, Deaner, and
van Schaik (2000) propose a latent variable model for primate intelligence. The responses are multiple
rankings of the skills of several genera of primates at performing different tasks, and thus this is a competing
model for that proposed here. The approach is couched in the Bayesian hierarchical modeling framework.
A strength of such an approach is that the Gaussian error structure makes it possible to study correlated
rankings. We studied a similar approach for racing data, but Gaussian errors fit the data poorly.

Stern (1990) presents a general class of models for permutations based on gamma random variables.
Stern’s approach is to estimate the distribution of finishing position assuming a given first place probability
for each individual. The results of the model are applied to horse racing. Our model most closely resembles
Stern’s model, except that we use a last place probability for each individual, which results in a better fit
for car racing, where early exits from a race are common (due to wrecks, engine failure, etc.).

Little work has been done on hierarchical modeling of interactions. Several authors indicate a desire to fit
interaction terms in a hierarchical sense (Berry, Reese, and Larkey 1999, for example), but are limited by the
type of data collected. Spiegelhalter, et al. (1999) present Bayesian hierarchical models for problems posed
by Breslow (1984), Breslow and Clayton (1993), and Clayton (1994) that were originally analyzed under a

more classical framework. In this work we present an approach to modeling interactions in a hierarchical



framework and in the next section we describe the data that support our specification.

2. DATA

We obtained race data from 1996-2000 from NASCAR’s web site, www.nascar.com, for the WC, BGN,
and CT series. Typical numbers of races per year are 34 for WC, 32 for the BGN series, and 25 for CT.
Data quality for the WC series is essentially flawless. Periodically the BGN data are missing certain finishing
positions (in these rare cases we act as if the missing drivers did not participate at all and move the remaining
drivers up one finishing position if necessary). The CT data are the most incomplete; some results from past
years are missing, and archived data include fewer data fields.

Available data fields include finishing position, starting position (determined by speed in a qualifying
lap), driver, car number, sponsor, car manufacturer, number of laps completed, indicator of whether driver
led any laps, indicator of whether driver led more laps than any other driver, status of driver at end of race
(either “Running” or a reason why the car wasn’t running), money and championship points earned (points
are determined by finish position and the indicators of laps led), date of race, and the track (and therefore
various qualities of the track, such as its length, amount of banking in degrees, and qualifying speed). The
data are available for download at the web site madison.byu.edu/racing/racing.html.

The WC series is more prestigious than the BGN series, but WC drivers (e.g. Mark Martin) frequently
drive in BGN races, making it possible to compare the relative strengths of drivers in the two series. There
is less cross-driving with the CT series, but there is some potential for comparison using multiple years of
data and drivers who were promoted from the CT to either the BGN or WC series. These comparisons will

need to allow for the possibility that some drivers improve over time.

3. FUNDAMENTAL MODEL

We use the model of Luce (1959), a natural extension of the Bradley-Terry paired comparison model (Bradley
and Terry, 1952), and a modification of the models discussed in Stern (1990) as the basis of our analyses.
In each series we observe R;;, the finishing position of the ith driver in the jth race. From these finishing

positions we want to estimate the ability of each driver for a given race. Letting 0;; represent the ith driver’s



ability in the jth race, our simplest model is
0,']' =0, and §; ~ N(/,L,O'g), (1)

in which each driver has a single ability parameter that is constant across races. o is given a prior distribu-
tion, and for our models, p can be taken to be zero without loss of generality. In more sophisticated models,
we will put structure on the 6;;’s and analyze the parameters inherent in this structure.

To create finishing order from the 8;; coefficients, we choose a driver to finish in last place with probability
proportional to A;; = exp(—#0;;). We then choose the second-to-last place finisher from the remaining drivers,
again with probability proportional to A;;, and repeat this process until drivers 4; and iz remain, and the
second place finisher is chosen to be driver iy with probability A;,;j/(Xi,; + Aiyj). This model is appealing
because it resembles what actually happens in a race, as drivers often drop out one by one; we refer to it as
the “attrition model.” (Slower cars can also be viewed as “dropping out,” though perhaps not at well-defined
times.) Let 7; be defined so that 7;(k) = ¢ means that driver ¢ finished in kth place in race j. If the data

set consists of J races and I; drivers took part in race j, this model gives rise to the likelihood function

J I i -1
P\ = [T I .5 ( ’\Wj(k),j> :
1

j=1i=1 k=

For example, consider a race j with three drivers, with A;; = 1, Ay; = 2, and A3; = 3. Then the probability
that driver 3 finishes third and driver 2 finishes second, P(123), is 3/(1+2+3) x 2/(1+2) = 1/3. Similarly,
P(132) = 1/4, P(213) = 1/6, P(231) = 1/10, P(312) = 1/12, and P(321) = 1/15.

The model has a further intuitive interpretation: one mechanism that would lead to this probability model
for permutations is if each driver remains in the race for an exponential length of time with rate (inverse mean)
parameter \;;. The finishing positions are then determined by ranking the “failure times.” (This follows from
the facts that if Z; and Z, are independent exponentials with rates A\; and A2, P{Z1 < Z2} = A1/ (A1 + A2),
the minimum of several independent exponentials is exponential with rate equal to the sum of rates, and
the memoryless property of the exponential distribution.) A consequence of this formulation is that the

probability that driver 4, finishes ahead of driver iy in race j is equal to Aiy;/(Aiy; + Aigj), independently



of which other drivers are in the race. The model for the ranks also results from a more general model for
failure times in which the various drivers have failure intensities given by \;;(¢) = A;;g;(t), where the A;;’s
are positive constants and the g;’s are positive functions not varying across drivers, so we are not in effect
assuming failure rates which are constant in time.

This formulation differs from the one in Stern (1990) in a subtle way: Stern’s model also in effect
determines the finishing order based on exponential random variables, but Stern’s winner is the racer with
the smallest exponential variable, while our winner has the largest. Stern’s exponential variables are to
be interpreted as lengths of time each competitor requires to complete the course, rather than as failure
times. Stern’s models also allow the ranking times to take on non-exponential distributions; in particular, a
gamma time with integer shape parameter r can be interpreted as the time it takes to score r (independent
exponentially distributed) points. Stern was motivated by horse racing, in which there is the appealing
interpretation that each of these points represents a fraction of the race length. In auto racing, in which
many cars that could have won the race see their chances end due to mechanical problems or crashes, the
failure time interpretation is more appropriate.

An appealing characteristic of the attrition model is that it captures the fact that a strong finish in a race
is a much more accurate measure of a driver’s ability than a poor finish. While any driver can suffer an early
mechanical failure or drop out due to an early accident, it is nearly impossible for a subpar driver to finish
strongly. In the attrition model, the kth place finisher is in essence involved in K — k + 1 comparisons with
other drivers. Consider a single race with K drivers and observed finishing positions 71 (-). The diagonal

elements of the observed information matrix are then:

0? N :
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Since ay, is non-negative, the sum in Equation 2 will be larger for smaller values of i. That is, the better the

finish, the greater the information about the driver’s parameter, except that the information is the same for



the first and second place drivers, since a; = 0.

4. ANALYSIS STRATEGIES

In this section we include some discussion about how we analyze these data. We discuss our choice of prior

distributions, our system for estimating Bayesian models, and which convergence diagnostics we use.

4.1 Prior selection

Our goal was to uncover differences between drivers and tracks that were driven by the data sets we used,
so we chose priors under which the drivers and tracks were exchangeable. (If instead one were interested
in integrating other information to attain better estimates of differences in driver abilities, one would use
nonexchangeable priors, presumably based on results of races prior to 1996 or in other racing series.)

We did not, however, make any effort to use priors which were fully non informative, such as using a
normal prior for #; with a large standard deviation. Instead we placed hyperprior distributions on these
standard deviations and chose the hyperprior parameters to give reasonable quantiles for quantities like the
probability of the 25th percentile driver finishing ahead of the 75th percentile driver. For example, consider
the model with a single ability parameter for each driver 6;; = 6;, where (6;|09) ~ N(0,03), and where gy is
exponential with mean b. To select the hyperparameter b, suppose that oy is equal to its pth quantile given b
(i.e. 0p = —blog(1—p)). In this case the probability that the wth percentile driver (whose 6 is equal to oyz,
where z, is the wth normal quantile) beats the median driver (whose 6 is zero) is (1 + (1 — p)®*=)~L. If, for
instance, we choose b = 1, the probability that the 90th percentile driver beats the median driver is 0.71 if
oy is equal to its prior mean, while this probability ranges from 0.53 to 0.95 if we allow oy to range from its
10th to 90th percentiles. Our most common choice in what follows is b = 1; we can see from this discussion
that this corresponds to a relatively non informative prior since this is a large range of probabilities.

The exchangeable prior strategy does have a weakness in that it does not take into account the fact that
if drivers participate in only some of the races, they are likely to participate in the ones in which they would
perform best. The effect is potentially to lead to overestimates of the abilities of these drivers. Several

drivers specialize in road course racing and enter only those races; some drivers preferentially enter races at



their home tracks; and drivers who would be unlikely to do well can fail to qualify.

4.2 An Object-Oriented System for Bayesian Data Analysis

We performed the analyses presented in this paper using a software system written in Java being developed
at Los Alamos (see Graves, 2001). The goals for this system include making it as easy as possible to
implement MCMC analyses of new models. It updates parameters exclusively through Metropolis steps, so
that conjugate priors and complete conditional distributions are not needed.

However, the software also allows parameters or groups of parameters to be updated in arbitrary ways,
in principle including Gibbs steps if they are implemented by the analysts, but so far we have found it more
useful to implement Metropolis steps where several (highly correlated) parameters are perturbed simulta-
neously to generate candidate moves. We used several types of complex Metropolis steps in the analyses
presented here. A simple example would be adding a common random constant to the entire 6; vector to
prevent the average value of the 6;’s from drifting slowly away from zero. We continue to study the circum-
stances under which complex update steps are useful in MCMC, and this software system provides an ideal
framework for such studies, since it computes Metropolis(-Hastings) acceptance probabilities for arbitrary
changes to the parameters. A typical MCMC algorithm generated by this system, then, loops over all the
parameters, updating each with a single-component Metropolis step, and at the end of the loop, additional
Metropolis-Hastings steps can optionally be added where candidates are generated by perturbing correlated
parameters simultaneously.

The system does not yet contain ways of automatically generating step sizes for Metropolis steps, so in
principle, a substantial amount of tuning of these step sizes could be necessary. We found that it was often
straightforward to reduce the numbers of effective tuning parameters: for instance, we assumed that driver
ability parameters could have step sizes that were a constant divided by the square root of the number of

races in which the driver participated, and tuned the constant.

4.3 Convergence diagnostics

Addressing convergence of Markov Chains in complex models (large number of parameters) is non-trivial.

To assess mixing, time series plots were created for each of the parameters, and all revealed good mixing of



the chains. Convergence of the chains were determined based on diagnostics proposed by Raftery and Lewis
(1996). While these diagnostics cannot predict absolute convergence, the criteria set forth in Raftery and

Lewis were all met completely for our study.

5. RESULTS

In this section we derive rankings for drivers based on their 2000 performances, estimate trends in drivers’
abilities over time, and compare drivers in different racing series by taking advantage of the fact that some
drivers participate in both. We also study track properties: whether tracks differ in predictability, which

tracks are most alike, and whether there is a driver-track interaction.

5.1 Track-independent driver abilities

The simplest model for these data includes only an ability coefficient for each driver that does not depend on
the race (0;; = ;). We fit this model to the results of the 2000 seasons in all three series. This model allows
us to ask whether a season convincingly demonstrates one race team’s superiority to another or whether
luck could explain their different degrees of success. For example, Jeff Gordon dominated the WC series in
1995-98 with forty wins and three championships, but he slipped to sixth in the season standings in 1999
and ninth in 2000 before winning another championship in 2001. We conclude that his 2000 season showed

a significant decline in his racing team’s ability parameter.

5.1.1 2000 Winston Cup season

Table 1 contains the results for the 2000 NASCAR Winston Cup season, in which Bobby Labonte won his
first NASCAR championship. The hierarchical model employed here assumes that driver ability coefficients
6; do not depend on the race and have normal prior distributions with mean zero and variance o3. The
hyperprior for oy is exponential with mean 1 as discussed in §4.1. The results are based on 10,000 MCMC
iterations after 1000 iterations of burn-in. We note that correlations between parameters are modest. For
purposes of comparison, we fit Stern’s model as well as the attrition model. Thirty-one drivers missed two

races or fewer, so comparisons among these drivers will not be affected by race selection bias.

Our results are similar to the WC series points standings, given in the “Official” column, with some



differences. Our model, the official standings, and Stern’s model differ in the extent to which they reward
very good finishes as opposed to punishing very bad finishes. Our model is the most strongly influenced
by victories and the least strongly affected by poor finishes, while Stern’s model is the reverse. In official
NASCAR standings, winless Ricky Rudd edged out series win leader Tony Stewart for fifth place, while we
place Stewart in third and Rudd in ninth, and Stern’s model lists Rudd in third and Stewart in eighth.
(Racing fans and journalists frequently complain about how the NASCAR points system fails to encourage
aggressive driving and winning races. Our model is not a serious candidate as a replacement, due to its
relative complexity and the uncertainty involved with MCMC estimates. However, it might be promising to
develop a simple system that approximates our ratings, by, say, regressing our posterior means on numbers
of finishes in each position. The results could then be adjusted so that drivers always earn positive points
by appearing in a race, so that there is no incentive to skip races.)

The biggest beneficiary of our method is Jeremy Mayfield, who is thirteen places lower in the official
standings due to missing two races, being penalized for an illegal part in another, and otherwise having many
very good and many very bad performances. An interesting question for future work is whether Mayfield
has a higher variance in his performance than other drivers. Ron Hornaday had the highest ranking for a
driver who drove in only one race; he finished thirteenth in that race. Ron Fellows and Kerry Earnhardt each
finished last in the only race they drove in, but since all drivers have prior mean abilities of zero, a single
last place does not translate to the lowest ranking (in posterior mean). (Fellows is a road course specialist,
so there was a danger that we would overestimate his ability as he entered only a race on his best track. His
poor finish solved this problem, unlike in the Busch season; see §5.1.2.) Darrell Waltrip, one of NASCAR'’s
all-time greats who retired after the season, had the lowest rating of any driver who drove in most of the
races. The posterior mean and standard deviation of oy were 0.82 and 0.09 respectively; oy is smaller in the
WC series than in the BGN or CT series, indicating that drivers are more evenly matched in the top series.

The eighth and ninth columns in Table 1 report results of 1000 simulated seasons where we recorded
which drivers won races or season championships. To simulate a season, we pick a vector of s by choosing
one of the MCMC iterations at random and obtaining race results according to the attrition model, assuming

that the participants in each race are the same as those who were in the corresponding race in the real season.
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These results help to address goodness of fit of the model, and the model matches well, with the average
numbers of wins close to the observed values and with deviations in unsurprising directions (e.g. Stewart
and Wallace won more races than expected, Earnhardt and Jarrett fewer). In the NASCAR ranking system,
drivers accumulate points in each race toward the season championship, earning points for their finishing
positions according to a piecewise linear function (175 for first, 150 for sixth, 130 for eleventh, and three
points fewer for each spot below eleventh), plus five point bonuses for leading at least one lap or for leading
more laps than any other drivers. Since we do not model leading laps, we approximated the leading lap
points by awarding ten points to the race winner and none to anyone else. Simulated Bobby Labontes won
a quarter of the simulated season championships, slightly more than simulated Jeff Burtons. We see that
the probability of Dale Earnhardt winning the championship was about thirteen percent, which provides a
starting point for discussions of the likelihood of his winning an unprecedented eighth championship had he
survived. Jeff Gordon’s @ posterior is not consistent with his performance as the dominant driver in 1996-8;
something was genuinely different in 2000: in fact, his crew chief left the team in mid-1999. In 2001, Gordon
and his new crew chief adjusted to each other as once again they convincingly won the championship.

For comparison, results from Stern’s model are also given in Table 1, including the posterior mean, average
number of wins in simulated seasons, and number of season championships won in 1000 simulated seasons.
Bobby Labonte’s rating is identical to ours to two decimal places, but Stern’s model gives a much larger gap
between Labonte and his pursuers: Labonte won a surprisingly high 77% of simulated championships while
winning a surprisingly low number of races. In the actual season, Labonte had only one finish of 22nd or
worse, explaining his dominance according to metrics that punish bad finishes, as Stern’s model does. The
numbers of wins for top drivers listed in Table 1 match simulated wins numbers from our model much better
than for Stern’s: the excess wins in Stern’s model go to drivers such as Sterling Marlin or Darrell Waltrip
who had mediocre or worse seasons in 2000. (Dale Earnhardt Jr.’s two wins looks like the biggest potential
sign of lack of fit for our model, as we estimate his expected number of wins to be 0.22. However, one out of
48 Poisson(0.22) variables will be two or larger, and it is not surprising to have one outlier of this magnitude
among 74 drivers.) In 283 of the 1000 simulated seasons under Stern’s model, no driver won more than three

races. At least since 1972, every WC series season has featured at least one driver who won five or more
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races. For the attrition model, fourteen out of 1000 simulations called for four wins by the leader, and never

did the leader have three or fewer. The attrition model’s right tail for the maximum wins statistic is still

too short compared to history: in thirteen out of thirty-one seasons, a driver had ten or more wins, while

the attrition model predicts that this should have happened only 4.4 times. This is unsurprising since the

drivers were more evenly matched in the 2000 data than in most years. These comparisons raise interesting

questions about choosing the best predictive model. If our model predicts better, then drivers with high

variability in their finishes should be expected to do better in the future than drivers who are consistent but

rarely outstanding. This heuristic would indicate that it is easier for a racing team to overcome reliability

and/or accident difficulties than to add enough speed to win.

Table 1. Selected results from simplest model, fit to 2000 Winston Cup Results. Shown are the driver’s rank
according to our posterior mean and according to the season points system, the posterior mean and standard
deviation of 0; for our model, the posterior mean for Stern’s model, and the numbers of races the driver
participated in and won in the 2000 season. The ninth and eleventh columns contain results from simulations
based on our model: the average number of wins by the driver per simulated season, and the number of
championships won by the driver in 1000 simulated seasons. The tenth and twelfth columns contain simulation

results using Stern’s model.

Atr  WC Driver  Post. Mean SD  Races Actual  Sim. Wins Sim. Titles
Atr Stern Wins Atr Stern Atr Stern

1 1 Bobby Labonte  1.64 1.64 0.21 34 4 4.86 3.00 266 770
2 3 Jeff Burton  1.59 0.98 0.21 34 4 4.48 1.50 231 27
3 6 Tony Stewart  1.53 0.73 0.22 34 6 3.84 1.20 155 1
4 2 Dale Earnhardt  1.47 1.28 0.20 34 2 3.64 2.10 126 141
5 4 Dale Jarrett  1.40 0.98 0.20 34 2 2.99 1.60 78 22
6 7 Rusty Wallace 1.34 0.85 0.21 34 4 2.62 1.40 51 7
7 8 Mark Martin  1.25 0.39 0.20 34 1 2.16 0.80 30 0
8 9 Jeff Gordon  1.25 0.80 0.21 34 3 2.12 1.20 39 3
9 5 Ricky Rudd 1.21 1.03 0.20 34 0 1.94 1.70 22 27
10 10 Ward Burton  0.97 0.563 0.20 34 1 1.02 1.00 3 2
11 24 Jeremy Mayfield  0.96 -0.16 0.21 32 2 0.98 0.50 0 0
16 16 Dale Earnhardt Jr.  0.51 0.21 0.21 34 2 0.22 0.70 0 0
21 54 Casey Atwood  0.28 0.28 0.47 3 0 0.02 0.07 0 0
22 19 Sterling Marlin  0.27 0.21 0.20 34 0 0.10 0.70 0 0
23 61 Ron Hornaday  0.21 0.16 0.62 1 0 0.02 0.02 0 0
32 48 Kurt Busch -0.08 0.02 0.37 7 0 0.01 0.10 0 0
61 72 Ron Fellows -0.61 -0.67 0.81 1 0 0.01 0.01 0 0
63 73 Kerry Earnhardt -0.64 -0.61 0.80 1 0 0.01 0.01 0 0
71 36 Darrell Waltrip -0.85 -0.47 0.21 29 0 0.00 0.30 0 0
74 53 Jeff Fuller -1.14 -0.54 0.41 7 0 0.00 0.07 0 0
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5.1.2 2000 Busch Series season

We performed the same analyses using the 2000 Busch series Grand National Division results; these results
can be found in the long version of this paper at http://madison.byu.edu/racing/racing.html. Jeff
Green won the BGN championship by a record-setting margin in that season. According to our model, the
probability that his § was higher than that of the second best BGN regular was about 0.988, and he won
88% of the simulated championships. Still, three WC series regulars who drove in some BGN races were
rated more highly, in particular Mark Martin, who finished sixth or better in all thirteen of his races with
five wins. Two road racing specialists, Ron Fellows and Butch Leitzinger, entered a single race on a road
course and finished first and second; our method gives them the sixth and twelfth highest ratings. This is
a great example of a weakness in the simple model, which assumes that drivers are equally skilled on all
tracks. Drivers that enter only a few races are likely to choose the tracks for which they are best suited, and
that is certainly what happened with road racing specialists Fellows and Leitzinger. Based on these data, it

is unwise to draw conclusions about their ability on oval tracks relative to series regulars.

5.1.3 2000 Craftsman Truck season

Also at http://madison.byu.edu/racing/racing.html is our analysis of the third major NASCAR series,
the Craftsman Truck series. Again our results are similar to the official season standings, with subtle

differences. Season champion Greg Biffle had a 43% chance of winning the championship.

5.2 Who are the future stars? Trends in driver ability

Fitting the models of the previous section on other individual years or on several years simultaneously makes
it clear that driver abilities are not constant over time. Berry, Reese and Larkey (1999) use hierarchical
modeling to estimate typical ability trends as a function of age in baseball, golf, and ice hockey. Since we
have only five years of data available and since drivers often have long careers, sometimes performing at top
levels into their fifties, we will be more modest and look for linear trends in ability over this period of time.
We focus on the CT series, since it tends to have many young, rapidly improving drivers.

Table 2 contains the results, based on 10000 MCMC iterations after 1000 iterations of burn-in. After
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collapsing all 83 drivers who drove in only one race into a single “Miscellaneous” driver, 224 drivers remained
in the data set. (The Miscellaneous driver includes such stars as Bobby Labonte, Rusty Wallace, and Tony
Stewart, as well as many far less talented drivers.) The model assumes that driver 4’s ability in year 1998 is
equal to «;, and that driver ¢ improves by an amount j3; each year: 6;; = a; + 8;(y; — 1998), where y; is the
year in which race j took place. The a;s have a N(0,1) prior distribution, while the 3;s have a N(0,0.32)
prior distribution, independent of the «;s. The table contains posterior means and standard deviations of a
and g for selected drivers, the rank of each driver’s posterior mean ability for 1996, 1998, and 2000, and the
number of races driven in each of the five seasons.

The fastest improving driver was Greg Biffle, who did not race in the CT series in 1996 or 1997, finished
eighth in the standings in 1998, second in 1999, and comfortably first in 2000. Still more interesting was
the second fastest improving driver, Kevin Harvick, who left the CT series after a 12th place finish in 1999.
Had we fit this model at the end of 1999, we would have been much less surprised by Harvick’s third place
finish in the BGN series standings; that performance was far better than he had done in the CT series, but
his improvement in CT racing was steady and fast. In 2001, Harvick had a strong rookie year in the WC
series (he took over for Dale Earnhardt), while also winning the BGN series championship. We might have
expected Biffle to do well in the BGN series in 2001 (he finished a strong fourth), and Andy Houston, who
had the third highest improvement rate, to do well in the WC series (he did not, being released by his team
after qualifying for only seventeen races with a best finish of 17th). The best way to earn a highly negative
B coefficient was to perform brilliantly in 1996 and to mostly stop racing in the CT series afterwards, as
1996 third place finisher and 1997-2000 WC series driver Mike Skinner did. (Of course, if we included Cup
results in this analysis, we might no longer claim that Skinner was regressing, since he has performed solidly

in his new series.) Joe Ruttman, now in his late 50s, remained largely consistent over the five years.

5.3 Comparing the three series

Since we model finishing order for a race containing any subset of drivers, it is natural to analyze races from
different series simultaneously, under the assumption that a driver’s ability in a WC series car is the same

as his ability in a CT series truck. See http://madison.byu.edu/racing/racing.html for details. This
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Table 2. Trends in driver ability over time. From data for Craftsman Truck series, 1996-2000. The table lists
posterior means and standard deviations for o; and 3;, where the ability for driver i in a race in year j is
a; + (§ — 1998)8;. We also list the numbers of races by the drivers in each of the five seasons, and the ranks for
the posterior means in 1996, 1998, and 2000. The drivers shown are listed in order of estimated 2000 ability

(a+20).

Driver E(a) SD(a) E(B) SD(p) Races Ranks

Greg Biffle  1.53 020 0.49 0.5 00/00/25/25/24 46/11/01
Kurt Busch 161  0.54 028  0.25 00/00/00/00/24 23/06/02
Ernie van  1.83 036 0.16  0.24 03/01/02/01/00 10/03/03

Stacy Compton 139 0.4 032  0.14 00/22/25/25/00  38/15/04
Rich Bickle 1.60 027 014  0.18 24/22/04/02/00 12/05/05
Jack Sprague  2.10 0.11 -0.07 0.08 24/22/25/25/24 04/01/06
Mike Wallace 1.24  0.14 035 0.1 00/14/25/25/24  49/18/07
Ron Fellows 143 031 021 020 00/04/04/04/01 30/14/08
Andy Houston 111 017 036  0.13 00/04/25/25/24 59/19/10
Kevin Harvick 078 0.4 049  0.15 04/12/24/25/00  123/35/13
Joe Ruttman  1.60 0.11  0.01 0.08 24/22/25/19/24 09/07/14
Ron Hornaday 2.02 0.3 -022  0.10 24/22/25/25/00 02/02/15
Randy Tolsma 094 0.3 023  0.10 01/16/24/25/24 54/29/16
Mike Bliss 146  0.13 -0.09  0.10 24/22/25/25/00 07/13/18
Mark Martin ~ 1.77 068 -0.31  0.27 02/00/00/00/00 03/04/20
Mike Skinner ~ 1.56 041 045  0.21 24/03/02/00/00 01,/09/42
Tammy Jo Kirk  0.06 025 -0.07  0.24 00/16/12/00/00  71/91/100
Mike Swaim -0.13 059 -0.00  0.28 00/00/00/03/00 106/112/111
Dave Rezendes 055 029 -040  0.18 24/19/06/00/00  13/53/136
Miscellaneous  -0.55 0.13 -0.02 0.08  Hok ek ok prx pxx 174 /175/175
Jerry Glanville -0.63 031 -0.05  0.18 05/02/02/04/00 180/189/194
Mike Hurlbert -1.60 057 031  0.26 12/01/00/00/00 224/223/209
Phil Bonifield -2.56 043 -0.28  0.25 00/00/00/13/08 223/224/224

analysis involves some assumptions that are not entirely realistic: for example, we ignore the likely reduced
performance of drivers when they change series and adapt to unfamiliar tracks and new vehicle types, crew
chiefs, and racing teams. Subject to this proviso, we found that in 2000 the BGN series champion was the

eighth best overall driver and the CT champion was 13th.

5.4 Do different tracks have different variances?

We now explore track effects. Before modeling track-driver interactions in the next section, we first ask the
question of whether certain tracks’ results are more predictable than others’. Let T'(j) denote the track for
race j, and let \;; = exp(—dr(;)0i;). The ¢r(;) parameters are then precision parameters, which are large
if races on track T'(j) are relatively predictable. For the purposes of this analysis we took driver abilities

to be independent of the tracks (6;; = 6;), and to have the standard Gaussian prior. We took the prior
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distribution for the ¢’s to be exponential with mean by, where by has a standard exponential hyperprior.

We studied this model using five years of WC series data (1996-2000). We made this choice because we
wanted to limit the number of drivers and to assume that their abilities remained constant over the races
in the data set. Table 3 contains the results for the 22 tracks in the data set. We ran the chain for 5000
iterations after 1000 iterations of burn-in. There are a total of 136 parameters including 113 driver abilities,
22 track predictabilities, and bg. The posterior mean and standard deviation for by were 2.42 and 0.61. In
this analysis, the driver abilities were also compressed relative to previous analyses, so that the ¢s can all
be larger than one. The standard deviation of the set of posterior means of driver coefficients is 0.36, while
this quantity was about one in the previous analyses.

There are some potential identifiability issues with this model. The functions of § and ¢ that are estimable
from the data are of the form ¢;(0;, — 6;,). Another way of saying this is that the likelihood is invariant to
increasing the scale of the ¢s by a positive constant and decreasing the scale of the s by the same constant.
Consequently, the prior alone determines whether, for example, all the ¢s should be very large while all the
s are close together. Identifiability issues like these can have two consequences: first, the parameters can be
hard to interpret. In this case, ratios of posterior means in Table 3 are more interpretable than the posterior
means themselves, and all of the ¢s are positively correlated so the marginal standard deviations lead to
overestimates of the variability in ratios of ¢s. Second, poor identifiability can lead to poor convergence
properties of MCMC algorithms with componentwise parameter updates, and indeed we did observe poor
mixing of, for example, the mean of the ¢s and the variance of the #s when we used only componentwise
Metropolis updates. One way to address this problem is to insist that the average value of the ¢s is always
equal to one and modify the prior distribution accordingly. Instead, we chose to use simple prior distributions
and a new MCMC algorithm with componentwise Metropolis steps as before, and additional Metropolis steps
designed to improve mixing of the MCMC algorithm. Specifically, we added the following two steps: in the
first step, our Metropolis candidate is obtained by generating a single Gaussian random variable with specified
standard deviation, and adding this common value to all of the 6;’s. This keeps the average value of the
fs around zero and hence consistent with the prior. In the second step, we generate a random Gaussian

W, and construct the new candidate values of the parameters as follows: let § be the mean of the current
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values of the 6;’s, and let ¢ = 8 + exp(W)(0; — 0), ¢ = exp(—W)¢;, and bg = exp(—W)bs where the
superscript © refers to “candidate.” The parameters are then changed to their candidate values with the
appropriate Metropolis-Hastings probability. These two moves do not change the value of the likelihood,
only the prior. The Java system we are using makes it easy to add Metropolis-Hastings steps in which
multiple parameters are modified at once. In the present example, we do obtain very good mixing, according
to the Raftery and Lewis convergence diagnostics: only one parameter was suspect, the ¢ parameter for
North Wilkesboro Raceway, for which we only had one race of data. The ¢;’s are all estimated to be greater
than their prior mean value of one, because the prior distribution for the fs pulls them toward each other

and hence encourages the ¢s to be large.

Table 3. Predictability measures for Winston Cup tracks, listed from most to least predictable. The table
contains the posterior mean and standard deviation for the predictability parameters ¢, together with
information about the tracks’ characteristics: their lengths in miles, numbers of degrees of banking in the corners
(not listed for road courses), and speed as measured in miles per hour for the fastest lap ever run in qualifying.

Rank Track E(¢) SD(¢) Length Banking Speed
1 Charlotte  3.22 0.63 1.50 24 186
2 Dover 3.03 0.59 1.00 24 160
3 Rockingham, NC 2.97 0.59 1.02 22 158
4 Michigan  2.94 0.58 2.00 18 191
5 Darlington, SC  2.92 0.58 1.37 23-25 174
6 Indianapolis  2.81 0.62 2.50 31 181
7 Bristol, TN 2.80 0.57 0.53 36 126
8 Pocono, PA  2.78 0.57 2.50 6-14 172
9 Richmond, VA  2.76 0.56 0.75 14 126
10 Las Vegas  2.68 0.65 1.50 12 173
11 North Wilkesboro, NC  2.61 0.80 0.63 14 ?
12 California  2.56 0.61 2.00 14 186
13 Atlanta  2.54 0.55 1.54 24 197
14 Phoenix  2.51 0.54 1.00 11 135
15 Homestead-Miami  2.47 0.69 1.50 8 156
16 Martinsville, VA 2.45 0.52 0.52 12 95
17 Daytona  2.34 0.48 2.50 31 210
18 New Hampshire  2.18 0.46 1.06 12 132
19 Sears Point, CA  2.07 0.45 1.95 Road 99
20 Texas 2.04 0.52 1.50 24 192
21 Talladega, AL  1.79 0.39 2.66 33 213
22 Watkins Glen, NY  1.42 0.40 2.45 Road 121

Most of the tracks have similar values of ¢, but some interesting things emerge. The most and fourth-most

unpredictable tracks, Watkins Glen and Sears Point, are the only road courses in the data set. Road courses
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differ from other tracks in that they include more curves, including some right turns. Common perception
is that driving talent differs for road and oval tracks (in fact, teams often hire specialists to substitute for
their normal drivers on road courses). The second most unpredictable track, Talladega Superspeedway in
Alabama, is genuinely unpredictable. It is NASCAR’s fastest track with qualifying speeds in excess of 190
mph for a lap, and the track tends to equalize the cars because it is easier to build a car with good handling
there. It is one of two tracks (Daytona being the other) where carburetor restrictor plates are used, which
reduces rates of acceleration. Races at Talladega feature all the cars bunched together for essentially the
entire race, where cars frequently can gain or lose many ranks rapidly if they line up together or fail to do
so. Also, crashes at Talladega can easily include ten or more cars due to the close packing and high speeds.

One of our hypotheses is that the most challenging tracks will be most predictable. Of the predictable
tracks, Lowe’s Motor Speedway in Charlotte, NC is famous for changing its properties during races as
temperatures and cloud cover change, which would favor experienced teams and drivers, but it is also the
site of NASCAR’s longest race (600 miles), and a priori one expects that longer races provide more time
for good drivers to assert their superiority regardless of track difficulty. The second, third, and fifth most
predictable tracks, Dover Downs (“The Monster Mile”), North Carolina Speedway in Rockingham, and
Darlington, SC (“The Track Too Tough to Tame”) are also known for their difficulty; Rockingham and
Darlington are difficult in part because their abrasive surfaces wear out tires quickly.

Another of our hypotheses is that short tracks are less predictable than longer tracks, because more
congested racing can lead to more frequent crashes, even by good drivers. The data contain no evidence of
this phenomenon (or its reverse), as the four tracks in the data set of length shorter than a mile (Bristol,

Richmond, North Wilkesboro, and Martinsville) were all estimated to be of essentially average predictability.

5.5 How strongly do drivers’ abilities depend on tracks? Which tracks are most similar?

Home field advantages are factors in most sports. In racing, this concept is much richer, since drivers
potentially have a different ability on each track. Rusty Wallace seems to be the strongest driver on short
tracks, while the late Dale Earnhardt was unmatched on large, fast superspeedways where restrictor plates

are used and where drafting is critical. In this section we fit ability coeflicients that are different for each

18



(track, driver) combination. The hierarchical form of the model encourages drivers that have been successful
in general to have large abilities even on tracks where they have been unsuccessful in limited opportunities.
We can also post-process the track-driver interactions to explore which tracks are most similar, by measuring
which drivers tend to do well on both tracks.

This is a much more general model, in which 0;; = v,7(;y, (Vi1,-- - viT)|0; ~ N(6;, b?), and 6; ~ N(0,b3).
(Recall that T'(j) denotes the track of race j.) The respective prior distributions for b and by can measure our
a priori opinions about the importance of track-driver interactions. We took by to have a gamma distribution
with mean 2 and standard deviation 0.5 and b a gamma distribution with mean 1 and standard deviation
0.1, so that a priori the ratio of across-driver standard deviation to within-driver, across-track standard
deviation would be about 2:1. Another approach would be to assume that 61, ...,07 have a multivariate
normal distribution with unknown covariance matrix, where the off-diagonal elements of the covariance
matrix show which tracks are most similar to each other. We chose to instead analyze similarity of tracks
by post-processing the sequences of v;r(;)’s obtained by the MCMC.

The results, based on the 1996-2000 WC data and 5000 MCMC iterations after 1000 iterations of burn-in,
are presented in Table 4. We organize the results by track. We estimated that Jeff Gordon is in fact the best
driver on every track. This hints that track-driver interactions may not be particularly important, but there
are indications based on correlations between tracks that track-driver interactions are real but require many
races to estimate because of the large amount of noise in racing. We list Gordon’s posterior mean ability
on each track, then the driver we estimated to be the second best at each track, and the difference between
Gordon’s posterior mean and his. We then list the driver who has the largest posterior mean difference
between his track ability and his overall ability (v,r(;) — 6;), together with this difference. These results
are satisfying since they agree with our perceptions of who has been successful at particular tracks. (The
authors have been using these results in a fantasy racing league, with reasonable results).

We also list, for each track, the track whose driver ability coefficients are most similar, by constructing the
matrix of posterior means of (;r(;) —6:)’s and computing the correlation matrix of tracks. These results hint
that the track-driver interaction phenomenon is real, since tracks we expected to be similar are estimated

to be similar. The two restrictor plate superspeedways, Daytona and Talladega, tend to favor the same
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drivers. The track most like the road course at Watkins Glen is the other road course at Sears Point. The
slowest oval, the short track at Martinsville, is similar to these road courses, as is the short track at Bristol.
Another pair of tracks that we a priori expected to be similar were Darlington and Rockingham, two old
Southern tracks that wear out tires quickly. The other track similarities are more difficult to explain, but
no obvious nonsense emerges. At the time we completed the analysis we believed that the biggest surprise
was the similarity between the three-quarter mile track at Richmond and mile track at Phoenix, but both
of these tracks are relatively flat, and we have since heard driver Jimmy Spencer say that Phoenix was
the most logical place to expect success from his car that won both BGN races at Richmond in 2001. The
posterior mean of the ratio by /b (a measure of importance of driver-to-driver variation relative to track-driver
interactions) was 3.63, with standard deviation 0.53, so the probability that this ratio exceeds its prior mean

of two is quite high. That is, track-driver interactions are smaller than we expected a priori.

Table 4. Track-driver interactions. We estimated Jeff Gordon to be the best driver on all tracks, so for each
track we list his posterior mean ~y;r ;). We also list the second best driver on each track together with the
difference between Gordon'’s abilities and theirs: these can be converted into probabilities that they beat Gordon
using the function 1/(1 + exp(x)). The next two columns contain the names of the “specialists”, the drivers
whose track-specific abilities are above their overall abilities by the largest amount, and the size of this
deviation. Finally for each track we list the track most similar to it as measured by correlations between drivers’
posterior means. Refer back to Table 3 for descriptions of these tracks.

Track Gordon Driver#2 <Gordon Specialist A Most Similar

Atlanta 1.82 Dale Jarrett 0.08 Bobby Labonte 0.31 Charlotte

Bristol 1.95 Mark Martin 0.30 Rusty Wallace 0.39 Sears Point
California 1.94 Dale Jarrett 0.38 Jeremy Mayfield 0.26 Pocono
Charlotte 1.87 Dale Jarrett 0.20 Ward Burton 0.19 Dover
Darlington 2.04 Dale Jarrett 0.30 Jeff Burton 0.25 Rockingham
Daytona 1.79 Dale Jarrett 0.08 Dave Marcis 0.24 Talladega

Dover 1.88 Mark Martin 0.20 Matt Kenseth 0.24 Homestead
Homestead 1.83 Tony Stewart 0.19 Tony Stewart 0.18 Dover
IndianapolisMS 1.87 Dale Jarrett 0.12 Bobby Labonte 0.17 Michigan
Las Vegas 1.80 Mark Martin 0.21 Jeff Burton 0.21 Darlington
Martinsville 1.95 Tony Stewart 0.47 Bobby Hamilton 0.34 Sears Point
Michigan 1.90 Dale Jarrett 0.10 Ernie Irvan  0.32 Indianapolis MS

New Hampshire 1.84 Jeff Burton 0.22 Joe Nemechek 0.33 Talladega
North Wilkesboro 1.96 Dale Jarrett 0.33 Terry Labonte 0.16 Rockingham
Phoenix 1.75 Dale Jarrett 0.13 Bobby Hamilton 0.20 Richmond
Pocono 2.01 Dale Jarrett 0.25 Jeremy Mayfield 0.28 Michigan
Richmond 1.85 Dale Jarrett 0.09 Dale Earnhardt Jr. 0.20 Phoenix
Rockingham 1.92 Dale Jarrett 0.10 Ricky Craven 0.34 Darlington
Sears Point 2.02 Mark Martin 0.37 Darrell Waltrip  0.24 Martinsville
Talladega 1.79 Dale Jarrett 0.12 Kenny Wallace 0.32 Daytona
Texas 1.69 Dale Jarrett 0.07 Dale Earnhardt Jr. 0.20 California

Watkins Glen 1.95 Mark Martin 0.41 Robby Gordon 0.36 Sears Point

20



5.6 Bayes Factors

In Section 5.1.1 we presented results for our model and the corresponding results for Stern’s model and
argued for our model based on the results themselves. We can use Bayes factors (Kass and Raftery 1995) to
compare the two models in a more quantitative sense. Bayes factors are ideal for comparing two models p;

(ours) and p, (Stern’s) by computing

B, = [ p1(y|Q1)my (Q21)dQy
27 [ pa(y]92)ma(Q2)de”

(3)

where Q; and (), are the parameters that identify the prior distributions 7; and w2 for models p; and po,
respectively. Using an optimal bridge sampling (Meng and Wong 1997) approach to calculate the numerator
and the denominator, we find log Bia & 13.24, so that the data suggest our model fits the 2000 WC series
data decisively better (in the sense of Kass and Raftery (1995)) than Stern’s model. We note that assuming
the model that finishing position is purely a random arrangement of drivers versus our model provides a

Bayes factor of log B2 = 3900.

6. CONCLUSIONS AND FUTURE WORK

We have demonstrated a new class of models for permutations that have natural applicability in the analysis
of auto racing results. One feature of our Bayesian formulation is that interaction terms can be estimated in a
fully hierarchical manner. This hierarchical specification allows “borrowing of strength,” making interaction
estimation in this framework particularly appealing. The results provide a basis for judging not only driving
teams’ abilities, but the variation of driving teams’ abilities on different tracks. This has implications for
sponsors who may choose whether to sponsor a team based on that team’s ability on those types of tracks.

Several points were made clearer through this analysis. First, the ability measured here is really team
ability and not necessarily driver ability. Most people associate cars with drivers, but it is all but impossible
to separate the driver and driving team effects. The second point is that while we found one driver (Jeff
Gordon) to be the best on every track, there is evidence that drivers have different abilities on different

tracks; that is, there is a track-driver interaction. The third point is that our modeling approach permits
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us to identify “track specialists.” These may not be the best drivers on a particular track, but they are at
their personal best at that track. This finding has implications for sponsors, as they may want to choose
a specialist if they are going to underwrite an entire race. A potential danger for our methodology is that
we can overestimate the ability of a driver if he is successful in entering races where his chances of a good
finish are better than on other tracks. We think this is only a serious problem in the case of road course
specialists. At the Winston Cup level, regular drivers miss races because they are hurt (and injuries happen
at random for this purpose), because they lose their jobs (normally after a string of poor performances, in
which case their ability is unlikely to be overestimated), or because they fail to qualify for the race (though
this is rare due to provisional starting rules). In recent history, it is rare for drivers to preferentially enter
races on particular types of oval-shaped tracks.

With regard to future work, we note that race weekends generate more measures of driver performance
than just the finishing positions, including speed (and rank of these speeds) in qualifying and in two or three
practice sessions. It would be of interest to model the relationships between these various rankings. It is not
clear how to do this with our current model; in contrast, using the model of Johnson et al. (2000), one could
model race performance as a Gaussian deviation from mean ability from which the ranks are observed. One
could then estimate the properties of several correlated ranking mechanisms, although as mentioned before,
asymmetric error distributions are probably needed to model racing. In any case, the correlations between
these measures are likely to be low, and these other rankings probably do not help estimate driver abilities.
However, the data also contain the indicators of whether drivers led laps in races and whether they led more
laps than any of the other drivers, and these measures are likely to be helpful in estimating driver ability
were we to find joint distributions for modeling finishing positions along with these indicators. An extreme
example of modeling correlated rankings would be modeling the standings in a race as it progresses; the

authors obtained such data at the time scale of roughly a minute for several 2000 races.
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